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Motivation & Introduction



AdS/CFT correspondence

• It is an exact equivalence of non-gravitational 
system and a gravitational system. 


• Gravity as a “hologram” of non-gravitational 
system.


• It gives a precise quantitative description of 
quantum gravity in anti-de Sitter space. 


• Black hole in gravity = Thermal state in field 
theory

Conformal field theory (CFT) in d-dimension =  
quantum gravity in (d+1)-dim anti-de Sitter (AdS) space. 

[Maldacena ’97] 
[Gubser-Klebanov-Polyakov ’98][Witten ’98]



The most familiar cases of AdS/
CFT are ‘derived’ from string/M-
theory.  

Probe large number of D/M-branes 
and take the near-horizon limit. 

Introduction to AdS/CFT
• 1997 Maldacena AdS/CFT correspondence

4D Supersymmetric SU(N) YM ←− IIB String Theory on AdS5 × S5

• Strongly-coupled 4D gauge theory = Gravity in AdS5

• Strongly-coupled gauge theory at finite temperature= Gravity in AdS black hole

• In the gravitational theory, black hole appears as a thermal system

• Correspondence: matching of partition functions

– p.12



Familiar cases of AdS/CFT
- Multiple D/M-branes probing singularities

• D3-brane probing Calabi-Yau 3-fold singularity (8 Q’s) 
4d N=1 quiver gauge theory ↔ Type IIB on AdS5×SE5 


• N M2-branes probing ℂ4/Zk (24 Q’s) 
3d N=6 U(N)k×U(N)-k theory ↔ M-theory on AdS4×S7/ℤk


• N M5-branes probing flat space (32 Q’s) 
6d N=(2, 0) AN-1 SCFT ↔ M-theory on AdS7×S4


• D1-D5 brane system with M4 transverse direction (8 Q’s) 
2d N=(4, 4) SCFT ↔ Type IIB on AdS3×S3×M4 (T4 or K3)



But, AdS/CFT correspondence goes beyond  
these well-controlled cases. 

Any Conformal Field Theory in d-dim 
= 

A “Quantum Gravity” in AdS in (d+1)-dim

CFT can be thought of as a definition of  
a certain ‘quantum gravity’ in AdS. 

Q) What sort of ‘quantum gravity’ for a given CFT?



The space of AdS QGs = CFTs

“Einstein-like” Gravity 
= “Holographic” CFT

Gravity with no UV completion “AdS Swampland” 
= Inconsistent (or part of a) CFT

“Exotic” Gravity 
= Generic consistent CFT



Holographic CFT
When do we have a semi-classical gravity dual?

• Existence of the Large N limit:  
We need a family of theories parametrized by N. 


• Locality in the bulk: Large Gap in the (single-trace) higher-spin operators


• Phase structure: Sparse spectrum at low energy 
<=> Hawking-Page phase transition


• Correlators of the low-lying operators factorize

[Heemskerk, Penedones, Polchinski, Sully] 
[El-Showk, Papadodimas], many others…



Large N gauge theories

• These conditions seem to be satisfied for ‘any’ 
large N gauge theories in the ’t Hooft limit. 


• Sparse spectrum from the gauge  
invariant operators with 


• Confinement/deconfinement transition  
<=> Hawking-Page transition

Δgap = 𝒪(1)

Is this always true? Does large N gauge theory  
always admit a semi-classical gravity dual? 

Figure 1: Typical spectrum of CFTs with holographic duals. The shaded
part at large conformal dimension represents a large (c-dependent) number
of heavy operators, which correspond to black hole microstates. The red
dots represent a small number (c-independent) light operators, whose corre-
lators factorize. These operators are represented holographically as free (or
weakly interacting) fields in AdS. This is only a cartoon and the spectrum at
intermediate values of conformal dimension may have complicated form.

number of operators remains finite, while above a certain conformal dimension ∆∗ (which

scales to infinity as c→∞) we have a c-dependent proliferation of states8. The theory has

a small low-lying sector separated from the huge number of operators with large conformal

dimension of order ∆∗ and higher as depicted in figure 1.

In the bulk the quantity g plays the role of h̄, hence in the limit c→∞ we have h̄→ 0.

The low-lying operators of the CFT are dual to the (perturbative) supergravity/closed

string modes whose numbers remains finite as we send h̄→ 0. On the other hand the large

number of states of conformal dimension above ∆∗ corresponds to black hole microstates

whose degeneracy blows up in the classical limit h̄→ 0 as can be seen from the Bekenstein-

Hawking entropy formula.

Moreover we assume that in the limit c→∞ the low-lying operators factorize i.e. they

become generalized free fields9. As we will try to argue in the rest of the paper, the effective

dynamics of the low-lying generalized free fields can be most naturally represented in an

8 This is to be understood as a qualitative statement, since the change of degeneracies from

O(1) to O(c) does not have to be sharp, there may be intermediate regimes.
9 While we use the term “field” for these operators it should be clear that they are not “fun-

damental” fields of the Lagrangian over which one should path integrate.
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Classifying large N theories

• Let us classify all possible supersymmetric large N gauge theories in 4d with 
the following conditions:


• The gauge group is simple: G=SU(N), SO(N), Sp(N). 


• The flavor symmetry is fixed as we take large N limit.


• No superpotential (at the moment) 


• The second condition is important from the AdS dual perspective, since the 
flavor symmetry of the boundary CFT becomes gauge symmetry in the bulk. 

See [Bhardwaj, Tachikawa] for the classification of N=2 gauge theories.



Constraints on matter multiplets

• Gauge anomaly should be absent: 
 

• Asymptotic freedom (negative beta function) 
 
                              


• Above condition restrict the matter representations to fundamental, adjoint, 
(trace-less) symmetric, anti-symmetric. 


• Let us restrict ourselves to the gauge theories flow to superconformal theories. 

2 Main idea and results

2.1 Classification of large N supersymmetric gauge theories

Let us discuss our scheme of classification. We will be considering four-dimensional N = 1

supersymmetric gauge theories that flow to interacting superconformal fixed points (without

a superpotential) in the infrared with the following assumptions:

The large N limit exists.

The gauge group is simple.

The flavor symmetry is fixed as we vary N .

The first two conditions restrict the gauge group to be classical SU(N), SO(N), Sp(N).

Imposing various consistency conditions on the gauge theory further constraints the rep-

resentations {Ri} of the chiral multiplets that can be incorporated into our theory. Firstly,

the theory must be free of any gauge anomalies. This implies
X

i

A(Ri) = 0 , (2.1)

where A(Ri) is the cubic Casimir of the massless fermions lying in representation Ri of th

gauge group. A(Ri) is non-zero only in the case of chiral representations of SU(N) gauge

theories. For the Sp(N) gauge theories, we have to ensure that the Witten anomaly [29]

vanishes. It implies that there has to be an even number of fundamental representations in

Sp(N) gauge theories. 2 Meanwhile, SO(N) gauge theories are anomaly-free and hence these

considerations do not restrict their matter content.

Secondly, asymptotic freedom requires that the �-function must be negative. This implies

b0 =

 
3h_ �

X

i

T (Ri)

!
� 0 , (2.2)

where the sum is over all charged matter multiplets and T (R) is the the Dynkin index where

our normalization is such that T (⇤) = 1
2 . Notice that the dual-Coxeter number h

_ of any

classical simple Lie group grows linearly in N .3 Thus the matter representations should have

a Dynkin index T (Ri)  O(N). Therefore, the allowed representations are given as follows:

fundamental and its complex conjugate: Qi, eQj

rank-2 antisymmetric and its complex conjugate: Ai, eAj

rank-2 symmetric traceless and its complex conjugate : Si, eSj

2More generally, if the Sp(N) generators are normalized such that TrT aT b = 1
2�

ab for the fundamental

representation, then the consistency requires that the matter content be such that T (R) : TrRT aT b = T (R)�ab

is an integer [29].
3h_

SU(N) = N,h_
SO(N) = N � 2, h_

Sp(N) = N + 2.
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Superconformal fixed point
• Necessary condition: Non-anomalous U(1) R-symmetry 
 
                                  


• Due to the superconformal symmetry, the conformal anomalies are fixed by the trace 
anomalies of R-symmetry.  
  

                           


• The R-symmetry is not always determined via anomaly constraint. There can be a family of 
candidate R-symmetries. 


• The superconformal R-symmetry is fixed by ‘a-maximization’:     

                                               

TrRTaTb = 0 ↔ T(adj)+ ∑i T(Ri)(ri − 1) = 0

a =
3

32 (3TrR3 − TrR) , c =
1
32 (9TrR3 − 5TrR)

∂atrial

∂R
= 0 ,

∂2atrial

∂R2
< 0 [Intriligator, Wecht]

[Anselmi, Freedman, Grisaru, Johansen]



Decoupling of operators along the RG flow

• Important caveat in a-maximization: accidental symmetry


• Some of the gauge invariant operators may seem to violate the unitarity 
bound: . 


• Plausible scenario: such an operator gets decoupled along the RG flow and 
becomes free with . 


• One can remove the decoupled free field by introducing a ‘flip field’ X and a 
superpotential coupling . 


• Redo the a-maximization until no operator gets decoupled. 

Δ ≥ 1

Δ𝒪 = 1

W = X𝒪

[Kutasov, Parnavhev, Sahakyan]

[Barnes, Intriligator, Wecht, Wright]



Simple large N gauge theory with 
O(N) degrees of freedom
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We find large N gauge theories containing a large number of operators within a band of low
conformal dimensions. One of such examples is the four-dimensional N = 1 supersymmetric SU(N)
gauge theory with one adjoint and a pair of fundamental/anti-fundamental chiral multiplets. This
theory flows to a superconformal theory in the infrared upon a superpotential coupling with gauge
singlets. The gap in the low-lying spectrum scales as 1/N and the central charges scale as O(N1)
contrary to the usual O(N2) scaling of ordinary gauge theory coming from the matrix degree of
freedom. We find the AdS version of the Weak Gravity Conjecture (WGC) holds for this theory,
although it cannot be holographically dual to supergravity. This supports the validity of WGC in
a more general theory of quantum gravity.

INTRODUCTION

The AdS/CFT correspondence provides a definition of
quantum gravity in (d + 1)-dimensional anti-de Sitter
space via conformal field theory in d-dimensions [1–3].
The most well-studied examples of AdS/CFT typically
involve supersymmetric gauge theories realized on the
stack of N branes in string/M-theory. The dual gravity
description in bulk becomes semi-classical supergravity
in the limit where string coupling goes to zero and the
AdS radius becomes large. This is tantamount to taking
large N and large ’t Hooft coupling limit in the boundary
field theory side.

However, the strong version of AdS/CFT asserts the
correspondence between AdS gravity and boundary CFT
holds beyond the semi-classical/particle limit. It means
that any conformal field theory in d-dimensions is equiv-
alent to a quantum gravity in d + 1-dimensional AdS.
For a finite N theory (the parameter N can be replaced
by central charges in general even-dimensional CFTs) at
generic coupling, the bulk description can be exotic (such
as light string states, non-local interactions) and very dif-
ferent from Einstein gravity.

One necessary condition for a large N CFT to have a
weakly-coupled Einstein-like holographic description in
AdS is the sparseness of the low-lying spectrum [4, 5]. It
means that as we take the large N limit, the gap between
the low-lying operators scales as O(1). This condition is
also necessary for the confinement/deconfinement transi-
tion to occur, which is dual to the Hawking-Page phase
transition [6, 7]. The number of heavy (� � O(N2))
states grows exponentially, which is accounted by the
black hole microstates.

Typically, any large N gauge theory in the ’t Hooft
limit satisfies this condition. This is because low-lying
gauge-invariant operators are formed out of O(N) ele-
mentary fields, such as Tr�i with 2  i  N in the case
of N = 4 super Yang-Mills theory. The ’t Hooft limit
ensures that the possible anomalous dimensions for the

elementary fields are under control. Therefore one nat-
ural question to ask is whether it is possible to have a
large N gauge theory that does not satisfy the sparse-
ness condition, which is necessary (and maybe su�cient)
to have a holographic description.
In this paper, we show that there indeed exists large N

gauge theories with dense spectrum at low-energy. More
precisely, the gap in the scaling dimensions for the low-
lying operators scales as 1/N , and the dimensions � of
the ‘single-trace operators’ lie within a band of� 2 (1, 3].
The central charges a and c of these theories grows lin-
early in the rank of gauge group N , contrary to the in-
tuitive growth of matrix degrees of freedom N2.
The gauge theories we study turns out to be rather

simple, but strongly-coupled and do not have any weak-
coupling limit. Our theories contain U(1) flavor symme-
try, and we test the AdS version of the Weak Gravity
Conjecture (WGC) [8, 9] for the charged states. We find
the WGC holds for these theories even though they are
not dual to semi-classical Einstein-like gravity.

THE MODEL: SU(N) SYM THEORY WITH 1
ADJOINT AND FUNDAMENTAL

Let us consider the N = 1 supersymmetric SU(N)
gauge theory with 1 adjoint chiral multiplet � and a
pair of fundamental/anti-fundamental chiral multiplets
(Q, eQ). Let us turn o↵ any superpotential term. There
are two flavor U(1) symmetries that we call U(1)B and
U(1)A. The charge assignments for the various symme-
tries can be summarized in a table as follows:

SU(N) U(1)B U(1)A R
Q N 1 N 1�NR�

Q̃ N̄ �1 N 1�NR�

� adj 0 �1 R�

(1)

The R-symmetry and U(1)A symmetry are subject to
the anomaly constraint. To find the superconformal R-
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charge in the IR we have to invoke ‘a-maximization’ [10],
which states that the correct IR R-charge maximizes the
a-function. The central charges for 4d SCFT can be writ-
ten in terms of trace anomalies [11]:

a =
3

32

�
3TrR3

� TrR
�
, c =

1

32

�
9TrR3

� 5TrR
�

(2)

Now the R-charge is fixed by evaluating @a
@R = 0, @2a

@R2 < 0.
An additional caveat arises from the fact that all the

operators must satisfy the unitarity constraint: Any
gauge-invariant chiral operators should have a scaling
dimension � greater than 1. During the course of a-
maximization, it often happens that the resulting value
of R-charges causes certain chiral operator dimensions to
drop to 1 or lower. This indicates that the corresponding
operator gets decoupled along the renormalization group
flow. Its contribution to the a-function must then be re-
moved, following which a-maximization has to be redone
[12]. This cycle needs to be iterated over until no more
operators decouple. One way to deal with the decoupled
operator is to introduce a ‘flip field’ XO for each would-
be decoupled operator O and add a superpotential term
W = XOO. The F-term for XO removes the free O from
the chiral ring [12–14].

A BAND OF DENSE SPECTRUM

Now, let us study the spectrum of this theory. The
(single-trace) gauge-invariant operators of this theory are
given as follows:

• Coulomb branch operators: �n, 2  n  N

• dressed mesons: Q�n eQ, 0  n  N � 1

• ‘baryon’: Q(�Q)(�2Q) . . . (�N�1Q)

• ‘anti-baryon’: eQ(� eQ)(�2 eQ) . . . (�N�1 eQ)

We suppressed the gauge indices in the above expression.
Let us remark that the chiral operators charged under
U(1)B (that we call baryon) have a very large engineer-
ing dimension. We now have to repeatedly a-maximize
and remove gauge-invariant operators whose scaling di-
mensions fall below the unitarity bound � > 1.
We find that some of the Coulomb branch operators

�n with n = 2, 3, . . . N get decoupled and are replaced
by corresponding flip fields, but not all of them are de-
coupled for N > 12. Most of the dressed mesons remain
coupled, but some of the low-lying ones hit the unitarity
bound and get decoupled. We find none of the ‘baryons’
decouple along the renormalization group flow.
Due to the peculiarities arising from the pattern of de-

coupling of operators, it is somewhat technical to estab-
lish an analytical handle on the large-N behavior of our
theory. For now, we su�ce ourselves with a numerical

FIG. 1. Plot of a/c vs N . The orange line fits the plot with
a/c ' �0.152/N + 0.998.

analysis of all gauge theories with 2  N  300. Upon
doing so, we obtain the IR central charges a, c behaves
approximately as

a ' 0.4992N � 0.1915 , (3)

c ' 0.5003N � 0.1460 . (4)

We see that the central charges grow linearly in the rank
of gauge group N , which is in stark contrast to the
UV central charges given as O(N2). This is due to the
very large quantum renormalization e↵ect caused by the
strong-coupling dynamics. We plot the ratio of central
charges a/c as a function of N in figure 1. It is clear that
the a/c approaches 1 in the large N limit, which is one
of the necessary conditions for a ‘holographic’ theory.

FIG. 2. Plot of scaling dimension of the lightest operator �1

vs N

The scaling dimension of the ‘lightest’ operator �1 in
the spectrum (the operator with the lowest scaling di-
mension) as a function of N is depicted in figure 2. The
lightest operator turns out to be given by the operator
Tr�n for some n when N > 12.

Matter contents:

Gauge invariant operators: 

It looks like any other gauge theories 
with a sparse low-lying spectrum.

This theory flows to a superconformal fixed point in the IR.

[Agarwal, JS 1912]

R-charge required to  
satisfy the anomaly constraint 


TrRTaTb = 0



Detailed analysis of the simple model
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gauge theory with one adjoint and a pair of fundamental/anti-fundamental chiral multiplets. This
theory flows to a superconformal theory in the infrared upon a superpotential coupling with gauge
singlets. The gap in the low-lying spectrum scales as 1/N and the central charges scale as O(N1)
contrary to the usual O(N2) scaling of ordinary gauge theory coming from the matrix degree of
freedom. We find the AdS version of the Weak Gravity Conjecture (WGC) holds for this theory,
although it cannot be holographically dual to supergravity. This supports the validity of WGC in
a more general theory of quantum gravity.

INTRODUCTION

The AdS/CFT correspondence provides a definition of
quantum gravity in (d + 1)-dimensional anti-de Sitter
space via conformal field theory in d-dimensions [1–3].
The most well-studied examples of AdS/CFT typically
involve supersymmetric gauge theories realized on the
stack of N branes in string/M-theory. The dual gravity
description in bulk becomes semi-classical supergravity
in the limit where string coupling goes to zero and the
AdS radius becomes large. This is tantamount to taking
large N and large ’t Hooft coupling limit in the boundary
field theory side.

However, the strong version of AdS/CFT asserts the
correspondence between AdS gravity and boundary CFT
holds beyond the semi-classical/particle limit. It means
that any conformal field theory in d-dimensions is equiv-
alent to a quantum gravity in d + 1-dimensional AdS.
For a finite N theory (the parameter N can be replaced
by central charges in general even-dimensional CFTs) at
generic coupling, the bulk description can be exotic (such
as light string states, non-local interactions) and very dif-
ferent from Einstein gravity.

One necessary condition for a large N CFT to have a
weakly-coupled Einstein-like holographic description in
AdS is the sparseness of the low-lying spectrum [4, 5]. It
means that as we take the large N limit, the gap between
the low-lying operators scales as O(1). This condition is
also necessary for the confinement/deconfinement transi-
tion to occur, which is dual to the Hawking-Page phase
transition [6, 7]. The number of heavy (� � O(N2))
states grows exponentially, which is accounted by the
black hole microstates.

Typically, any large N gauge theory in the ’t Hooft
limit satisfies this condition. This is because low-lying
gauge-invariant operators are formed out of O(N) ele-
mentary fields, such as Tr�i with 2  i  N in the case
of N = 4 super Yang-Mills theory. The ’t Hooft limit
ensures that the possible anomalous dimensions for the

elementary fields are under control. Therefore one nat-
ural question to ask is whether it is possible to have a
large N gauge theory that does not satisfy the sparse-
ness condition, which is necessary (and maybe su�cient)
to have a holographic description.
In this paper, we show that there indeed exists large N

gauge theories with dense spectrum at low-energy. More
precisely, the gap in the scaling dimensions for the low-
lying operators scales as 1/N , and the dimensions � of
the ‘single-trace operators’ lie within a band of� 2 (1, 3].
The central charges a and c of these theories grows lin-
early in the rank of gauge group N , contrary to the in-
tuitive growth of matrix degrees of freedom N2.
The gauge theories we study turns out to be rather

simple, but strongly-coupled and do not have any weak-
coupling limit. Our theories contain U(1) flavor symme-
try, and we test the AdS version of the Weak Gravity
Conjecture (WGC) [8, 9] for the charged states. We find
the WGC holds for these theories even though they are
not dual to semi-classical Einstein-like gravity.

THE MODEL: SU(N) SYM THEORY WITH 1
ADJOINT AND FUNDAMENTAL

Let us consider the N = 1 supersymmetric SU(N)
gauge theory with 1 adjoint chiral multiplet � and a
pair of fundamental/anti-fundamental chiral multiplets
(Q, eQ). Let us turn o↵ any superpotential term. There
are two flavor U(1) symmetries that we call U(1)B and
U(1)A. The charge assignments for the various symme-
tries can be summarized in a table as follows:

SU(N) U(1)B U(1)A R
Q N 1 N 1�NR�

Q̃ N̄ �1 N 1�NR�

� adj 0 �1 R�

(1)

The R-symmetry and U(1)A symmetry are subject to
the anomaly constraint. To find the superconformal R-

ar
X

iv
:1

91
2.

12
88

1v
1 

 [h
ep

-th
]  

30
 D

ec
 2

01
9

atr(RΦ) =
3
32 (3TrR3

tr − TrRtr)Compute the trial central charge “a”  
from the trial R-charge

TrR1,3
Φ = (N2 − 1)(11,3 + (RΦ − 1)1,3) + 2N(1 − NRΦ − 1)1,3

Anomaly constraint:    TrRTaTb = 0
C2(adj)(1 + (RΦ − 1)) + 2C2( □ )(RQ − 1) = 0

R[Gaugino]=1 alwaysN ½

dim(SU(N )) dim( □ ) + dim( □ )

R-1 for the fermionic 

partner



atr(RΦ) =
3
32 (3TrR3

tr − TrRtr)

Let us maximize “a” with respect to R-charge:
∂atr

∂RΦ
= 0 ,

∂2atr

∂R2
Φ

< 0

RΦ =
3 − 3N2 + 20N6 − 17N4 + 1

3 (2N4 − N2 + 1)
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Is this okay?  
We should check consistence!

RΦ ∼
1
N
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Unitarity bound

R-charges of some of the gauge-invariant operators

Unitarity violated! TrΦn, QΦmQ̃  for some n, m violates the unitarity bound!

These unitary violating operators get decoupled along the RG flow. 


This results in accidental U(1) symmetry that acts on the decoupled free field. 
It invalidates the a-maximization procedure.
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To take care of such decoupled operator, introduce a ‘flip field’ and a F-term

W = XTrΦ2

Which sets  in the chiral ring.  
Equivalently, it gives a mass for the “free field” .

TrΦ2 = 0
TrΦ2

Let us perform a-maximization again, with additional field X. 

TrR1,3
Φ = (N2 − 1)(11,3 + (RΦ − 1)1,3) + 2N(1 − NRΦ − 1)1,3 + (2 − 2RΦ − 1)1,3

RX + 2RΦ = 2

RΦ =
15 − 3N2 + 20N6 − 49N4 + 24N2 + 9

6N4 − 3N2 + 27

∂atr

∂RΦ
= 0 ,

∂2atr

∂R2
Φ

< 0



Upon performing a-maximization again, we obtain:
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No unitary violating operator for N=2.  
More operators decouple for N>2.

SU(2) + 1 adj + 2 ☐ → interacting SCFT + 1 free field



• For fixed N, we can repeat this procedure until no operator violates the unitarity 
bound. 


• Some of the Coulomb branch operators  and the dressed mesons  
decouple for low n. 


• None of the ‘baryons’ decouple. 


• The central charges can be computed using the trace anomaly:  
                                      

TrΦn Q̃ΦnQ

ΔB ∼ O(N)

a =
3
32 (3TrR3 − TrR) , c =

1
32 (9TrR3 − 5TrR)
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We find large N gauge theories containing a large number of operators within a band of low
conformal dimensions. One of such examples is the four-dimensional N = 1 supersymmetric SU(N)
gauge theory with one adjoint and a pair of fundamental/anti-fundamental chiral multiplets. This
theory flows to a superconformal theory in the infrared upon a superpotential coupling with gauge
singlets. The gap in the low-lying spectrum scales as 1/N and the central charges scale as O(N1)
contrary to the usual O(N2) scaling of ordinary gauge theory coming from the matrix degree of
freedom. We find the AdS version of the Weak Gravity Conjecture (WGC) holds for this theory,
although it cannot be holographically dual to supergravity. This supports the validity of WGC in
a more general theory of quantum gravity.

INTRODUCTION

The AdS/CFT correspondence provides a definition of
quantum gravity in (d + 1)-dimensional anti-de Sitter
space via conformal field theory in d-dimensions [1–3].
The most well-studied examples of AdS/CFT typically
involve supersymmetric gauge theories realized on the
stack of N branes in string/M-theory. The dual gravity
description in bulk becomes semi-classical supergravity
in the limit where string coupling goes to zero and the
AdS radius becomes large. This is tantamount to taking
large N and large ’t Hooft coupling limit in the boundary
field theory side.

However, the strong version of AdS/CFT asserts the
correspondence between AdS gravity and boundary CFT
holds beyond the semi-classical/particle limit. It means
that any conformal field theory in d-dimensions is equiv-
alent to a quantum gravity in d + 1-dimensional AdS.
For a finite N theory (the parameter N can be replaced
by central charges in general even-dimensional CFTs) at
generic coupling, the bulk description can be exotic (such
as light string states, non-local interactions) and very dif-
ferent from Einstein gravity.

One necessary condition for a large N CFT to have a
weakly-coupled Einstein-like holographic description in
AdS is the sparseness of the low-lying spectrum [4, 5]. It
means that as we take the large N limit, the gap between
the low-lying operators scales as O(1). This condition is
also necessary for the confinement/deconfinement transi-
tion to occur, which is dual to the Hawking-Page phase
transition [6, 7]. The number of heavy (� � O(N2))
states grows exponentially, which is accounted by the
black hole microstates.

Typically, any large N gauge theory in the ’t Hooft
limit satisfies this condition. This is because low-lying
gauge-invariant operators are formed out of O(N) ele-
mentary fields, such as Tr�i with 2  i  N in the case
of N = 4 super Yang-Mills theory. The ’t Hooft limit
ensures that the possible anomalous dimensions for the

elementary fields are under control. Therefore one nat-
ural question to ask is whether it is possible to have a
large N gauge theory that does not satisfy the sparse-
ness condition, which is necessary (and maybe su�cient)
to have a holographic description.
In this paper, we show that there indeed exists large N

gauge theories with dense spectrum at low-energy. More
precisely, the gap in the scaling dimensions for the low-
lying operators scales as 1/N , and the dimensions � of
the ‘single-trace operators’ lie within a band of� 2 (1, 3].
The central charges a and c of these theories grows lin-
early in the rank of gauge group N , contrary to the in-
tuitive growth of matrix degrees of freedom N2.
The gauge theories we study turns out to be rather

simple, but strongly-coupled and do not have any weak-
coupling limit. Our theories contain U(1) flavor symme-
try, and we test the AdS version of the Weak Gravity
Conjecture (WGC) [8, 9] for the charged states. We find
the WGC holds for these theories even though they are
not dual to semi-classical Einstein-like gravity.

THE MODEL: SU(N) SYM THEORY WITH 1
ADJOINT AND FUNDAMENTAL

Let us consider the N = 1 supersymmetric SU(N)
gauge theory with 1 adjoint chiral multiplet � and a
pair of fundamental/anti-fundamental chiral multiplets
(Q, eQ). Let us turn o↵ any superpotential term. There
are two flavor U(1) symmetries that we call U(1)B and
U(1)A. The charge assignments for the various symme-
tries can be summarized in a table as follows:

SU(N) U(1)B U(1)A R
Q N 1 N 1�NR�

Q̃ N̄ �1 N 1�NR�

� adj 0 �1 R�

(1)

The R-symmetry and U(1)A symmetry are subject to
the anomaly constraint. To find the superconformal R-
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charge in the IR we have to invoke ‘a-maximization’ [10],
which states that the correct IR R-charge maximizes the
a-function. The central charges for 4d SCFT can be writ-
ten in terms of trace anomalies [11]:

a =
3

32

�
3TrR3

� TrR
�
, c =

1

32

�
9TrR3

� 5TrR
�

(2)

Now the R-charge is fixed by evaluating @a
@R = 0, @2a

@R2 < 0.
An additional caveat arises from the fact that all the

operators must satisfy the unitarity constraint: Any
gauge-invariant chiral operators should have a scaling
dimension � greater than 1. During the course of a-
maximization, it often happens that the resulting value
of R-charges causes certain chiral operator dimensions to
drop to 1 or lower. This indicates that the corresponding
operator gets decoupled along the renormalization group
flow. Its contribution to the a-function must then be re-
moved, following which a-maximization has to be redone
[12]. This cycle needs to be iterated over until no more
operators decouple. One way to deal with the decoupled
operator is to introduce a ‘flip field’ XO for each would-
be decoupled operator O and add a superpotential term
W = XOO. The F-term for XO removes the free O from
the chiral ring [12–14].

A BAND OF DENSE SPECTRUM

Now, let us study the spectrum of this theory. The
(single-trace) gauge-invariant operators of this theory are
given as follows:

• Coulomb branch operators: �n, 2  n  N

• dressed mesons: Q�n eQ, 0  n  N � 1

• ‘baryon’: Q(�Q)(�2Q) . . . (�N�1Q)

• ‘anti-baryon’: eQ(� eQ)(�2 eQ) . . . (�N�1 eQ)

We suppressed the gauge indices in the above expression.
Let us remark that the chiral operators charged under
U(1)B (that we call baryon) have a very large engineer-
ing dimension. We now have to repeatedly a-maximize
and remove gauge-invariant operators whose scaling di-
mensions fall below the unitarity bound � > 1.
We find that some of the Coulomb branch operators

�n with n = 2, 3, . . . N get decoupled and are replaced
by corresponding flip fields, but not all of them are de-
coupled for N > 12. Most of the dressed mesons remain
coupled, but some of the low-lying ones hit the unitarity
bound and get decoupled. We find none of the ‘baryons’
decouple along the renormalization group flow.
Due to the peculiarities arising from the pattern of de-

coupling of operators, it is somewhat technical to estab-
lish an analytical handle on the large-N behavior of our
theory. For now, we su�ce ourselves with a numerical

FIG. 1. Plot of a/c vs N . The orange line fits the plot with
a/c ' �0.152/N + 0.998.

analysis of all gauge theories with 2  N  300. Upon
doing so, we obtain the IR central charges a, c behaves
approximately as

a ' 0.4992N � 0.1915 , (3)

c ' 0.5003N � 0.1460 . (4)

We see that the central charges grow linearly in the rank
of gauge group N , which is in stark contrast to the
UV central charges given as O(N2). This is due to the
very large quantum renormalization e↵ect caused by the
strong-coupling dynamics. We plot the ratio of central
charges a/c as a function of N in figure 1. It is clear that
the a/c approaches 1 in the large N limit, which is one
of the necessary conditions for a ‘holographic’ theory.

FIG. 2. Plot of scaling dimension of the lightest operator �1

vs N

The scaling dimension of the ‘lightest’ operator �1 in
the spectrum (the operator with the lowest scaling di-
mension) as a function of N is depicted in figure 2. The
lightest operator turns out to be given by the operator
Tr�n for some n when N > 12.



Feature 1: The O(N) degrees of freedom

The degrees of freedom grows as  instead of  
the natural matrix degrees of freedom !

O(N1)
O(N2)

The ratio a/c does not asymptotes to 1. (Non-holographic)

charges and R-charges to be

a ' 0.500819N � 0.692539

c ' 0.503462N � 0.640935

4⇡4
CA ' 9.90492N3 + 9.99795N2

� 180.279N + 7523.16

4⇡4
CB ' 12.8808N � 10.7703

R� ' 0.712086/N

RQ ' 0.284372 + 0.609971/N ,

(3.4)

where we fit the result for N from 100 to 600. We see that the central charges grow linearly

in N . We plot the ratio a/c vs N in Figure 2. Note also that ratio a/c of the central charges

of the IR SCFT in the large N limit goes close to 1 but not exactly. We find this value to be

strictly smaller than 1. (We have checked this numerically up to N = 2000.) This is another

indication that this theory is not quite holographically dual to Einstein-like supergravity in

AdS.
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0.9925
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Figure 2: Plot of a/c vs N for the SU(N) theory with 1 adjoint and Nf = 1. The orange

curve fits the plot with a/c ⇠ 0.919548 � 0.322605/N .

Notice that the R-charge of the adjoint � scales as 1/N at large N , which is the main

reason why we see the dense spectrum. This makes the scaling dimensions of the adjoint

mesons Q�i eQ to have a spacing of 1/N . We plot the dimensions of the low-lying operators

in Figure 3.

One may notice a narrow gap (1.92 . � . 2) in the spectrum depicted in Figure 3. The

lower band consists of the Coulomb branch operators �i and the adjoint mesons Q�i eQ that

are not decoupled (meaning higher powers in �), while the upper band consist of the operators

corresponding to the respective flipped fields for each of the decoupled operators. Within the

band, the spectrum becomes dense at large N . The gap appears because the light operators,

given by Tr�i, Q�i eQ with i ⇠ N , do not fill the band up to � = 2. Instead, for this model,

the heaviest adjoint meson operator Q�N�1 eQ has dimension � ' 1.92. The upper part of

the band consists of flip fields. The dimension of the flipped fields is given by �flip = 3��O,
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Figure 2: Plot of a/c vs N for the SU(N) theory with 1 adjoint and Nf = 1. The orange

curve fits the plot with a/c ⇠ 0.994757 � 0.111888/N .

Notice that the R-charge of the adjoint � scales as 1/N at large N , which is the main

reason why we see the dense spectrum. This makes the scaling dimensions of the adjoint

mesons Q�i eQ to have a spacing of 1/N . We plot the dimensions of the low-lying operators

in Figure 3.

One may notice a narrow gap (1.92 . � . 2) in the spectrum depicted in Figure 3. The

lower band consists of the Coulomb branch operators �i and the adjoint mesons Q�i eQ that

are not decoupled (meaning higher powers in �), while the upper band consist of the operators

corresponding to the respective flipped fields for each of the decoupled operators. Within the

band, the spectrum becomes dense at large N . The gap appears because the light operators,

given by Tr�i, Q�i eQ with i ⇠ N , do not fill the band up to � = 2. Instead, for this model,

the heaviest adjoint meson operator Q�N�1 eQ has dimension � ' 1.92. The upper part of

the band consists of flip fields. The dimension of the flipped fields is given by �flip = 3��O,

– 15 –



Feature 2: Dense spectrum

The spectrum of chiral operators form a dense band, instead of being sparse!  
(analog of the Liouville theory? Decompactification?)

It does not seem to exhibit confinement/deconfinement transition. 
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Figure 3: Dimensions of single-trace gauge-invariant operators in SU(N) + 1 Adj + 1 (

+ ) theory. They form a band between 1 < � < 3. The baryon operator is rather heavy to

be seen in this plot.

O being the operator that decouples with its naive dimension being 0 < �O  1. Thus the

dimension of the flipped fields is bounded from below by 2. This explains the gap between

the dimensions of the adjoint mesons and the flipped fields.

The ‘baryonic’ operators remain heavy so that they neither decouple nor form a band.

There is a single baryonic (and anti-baryonic) operator for the Nf = 1 adjoint SQCD given as

Q(�Q)(�2
Q) · · · (�N�1

Q), which lies above the ‘continuum band’ in large N . They remain

heavy at large N with � ⇠ O(N).

Let us check the AdS version of the Weak Gravity Conjecture for this model. Consider

the decay of black hole carrying an arbitrary charge with respect to U(1)A and U(1)B. Let

us consider the decay of black holes into three species of light states given by the lightest

meson Q�n eQ (for some n which depends on N), baryon Q(�Q)(�2
Q) · · · (�N�1

Q) and the

anti-baryon eQ(� eQ)(�2 eQ) · · · (�N�1 eQ). Any linear combination of these three states and their

conjugate states with opposite charges form a hexagon in the 2d plane of U(1)A,B charge-

to-dimension ratio space depicted in Figure 4. One can easily check that U(1)A and U(1)B
are mutually orthogonal. Then checking convex-hull condition reduces to checking whether

distances from origin to the two edges connecting 1) the lightest meson to the baryon, and 2)

the baryon to the conjugate of anti-baryon are both larger than 1. Because of the symmetries

of hexagon, distances from origin to the other lines are same to these two distances. We

checked that this model satisfies the convex hull condition as is depicted in Figure 5.

Nf = 2 theory Let us now consider the Nf = 2 theory. This case retain many of the same

qualitative features as its Nf = 1 cousin i.e. it has a dense spectrum of light operators and

displays a linear growth of central charges. In large-N the central charges and the R-charges
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We find large N gauge theories containing a large number of operators within a band of low
conformal dimensions. One of such examples is the four-dimensional N = 1 supersymmetric SU(N)
gauge theory with one adjoint and a pair of fundamental/anti-fundamental chiral multiplets. This
theory flows to a superconformal theory in the infrared upon a superpotential coupling with gauge
singlets. The gap in the low-lying spectrum scales as 1/N and the central charges scale as O(N1)
contrary to the usual O(N2) scaling of ordinary gauge theory coming from the matrix degree of
freedom. We find the AdS version of the Weak Gravity Conjecture (WGC) holds for this theory,
although it cannot be holographically dual to supergravity. This supports the validity of WGC in
a more general theory of quantum gravity.

INTRODUCTION

The AdS/CFT correspondence provides a definition of
quantum gravity in (d + 1)-dimensional anti-de Sitter
space via conformal field theory in d-dimensions [1–3].
The most well-studied examples of AdS/CFT typically
involve supersymmetric gauge theories realized on the
stack of N branes in string/M-theory. The dual gravity
description in bulk becomes semi-classical supergravity
in the limit where string coupling goes to zero and the
AdS radius becomes large. This is tantamount to taking
large N and large ’t Hooft coupling limit in the boundary
field theory side.

However, the strong version of AdS/CFT asserts the
correspondence between AdS gravity and boundary CFT
holds beyond the semi-classical/particle limit. It means
that any conformal field theory in d-dimensions is equiv-
alent to a quantum gravity in d + 1-dimensional AdS.
For a finite N theory (the parameter N can be replaced
by central charges in general even-dimensional CFTs) at
generic coupling, the bulk description can be exotic (such
as light string states, non-local interactions) and very dif-
ferent from Einstein gravity.

One necessary condition for a large N CFT to have a
weakly-coupled Einstein-like holographic description in
AdS is the sparseness of the low-lying spectrum [4, 5]. It
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� adj 0 �1 R�
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The R-symmetry and U(1)A symmetry are subject to
the anomaly constraint. To find the superconformal R-
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Matter contents:

Superpotential: W =
N−1

∑
i=1

(XiTrΦi+1 + MiQ̃Φi−1Q)

This theory flows to the (A1, A2n-1) Argyres-Douglas 
theory, which is a ‘non-Lagrangian’ N=2 SCFT.

[Maruyoshi, JS 1606] 
[Maruyoshi, JS 1607]

Chiral operators: 
Mi, Xi (i = 1,…, N − 1)

X ≡ QNΦN(N−1)/2, Y ≡ Q̃NΦN(N−1)/2, Z ≡ Q̃ΦN−1Q

XY = ZN

“Coulomb branch op”

“Higgs branch op”
ℳH = ℂ2/ℤN
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We checked that these conditions are also satisfied by
the lightest chiral operator in our theory for the case of
U(1)A and by the baryon operator in the case of U(1)B .
Therefore, it follows that our theory is indeed concordant
with the Weak Gravity Conjecture despite it having a
dense spectrum of light states.

ANOTHER MODEL: SU(N) THEORY FLOWING
TO THE ARGYRES-DOUGLAS THEORY

Let us consider SU(N) super Yang-Mills with a pair of
fundamental/anti-fundamental chiral multiplets (Q, eQ),
a single adjoint chiral multiplet � and two set of (N � 1)
gauge singlets Xi,Mi coupled via superpotential cou-
plings that flip all the Coulomb branch operators Tr�n+1,
as well as the dressed mesons TrQ�n�1 eQ for all 1  n 

N � 1. The superpotential is given by

W =
N�1X

i=1

XiTr�
i+1 +MiTrQ�i�1 eQ. (12)

The spectrum of chiral operators (both in the UV and
IR) in this case is simply given by Xi,Mi 81  i  N �1
in addition to the operator Q�N�1 eQ which becomes the
‘moment-map’ operator in the IR.

It is known that this theory flows to the (A1, A2N�1)
Argyres-Douglas (AD) theories [15, 16] at its IR fixed
point [17, 18]. We can therefore simply borrow the known
results for AD theories to understand the growth of the
central charges and operator scaling dimensions as a func-
tion of N . Thus the IR central charges are given by:

a =
12N2

� 5N � 5

24(N + 1)
, c =

3N2
�N � 1

6(N + 1)
. (13)

As is the case of the previous example without flipping all
the Coulomb branch operators and the dressed mesons,

we see that the IR central charges grow linearly with N
such that a, c ⇠ 0.5N and a/c ⇠ 1 at large-N . The
scaling dimensions of Mi and Xi are given by [19]

�Mi =
2N � i+ 1

N + 1
, �Xi =

3N � i+ 2

N + 1
, (14)

with i = 1, . . . , N � 1. A pair of N = 1 chiral multiplets
(Mi, Xi) form anN = 2 chiral multiplet, with the bottom
component given by the scalar component of Mi.
We see that the lightest chiral ring operator is given

by MN�1 while the heaviest chiral ring operator is given
by X1. As before, the scaling dimension of the lightest
operator is only infinitesimally greater than 1 at large-N .
Meanwhile, the gap in the scaling dimensions of the light-
est and the second lightest operator decays as O(1/N),
indicating the formation of a continuous band of opera-
tors with low conformal dimensions. We can also see this
from the fact that the gap between the dimensions of the
heaviest and lightest operator asymptotes to 2 while the
number of chiral operators in the interacting sector grows
linearly at large-N .
The IR fixed point of this theory has enhanced N = 2

supersymmetry and U(1)A ⇥ U(1)R symmetry gets en-
hanced to SU(2)R ⇥ U(1)r. The U(1)B remains as the
flavor symmetry of the theory with the moment-map
operator given as Z ⌘ Q�N�1 eQ. If we denote the
(anti)-baryon operator as X ⌘ QN�N(N�1)/2 and Y ⌘

eQN�N(N�1)/2, there is a relation given by XY = ZN .
They parametrize the Higgs branch of the theory, which
is given by C2/ZN .
The operator X,Y has scaling dimension N (which is

consistent with the fact that �Z = 2) and U(1)B charge

±N . We find that the 9CT
40CV,B

= 3N2
�N�1
2N2 > 1 in the

large-N limit, whereas �2/B2 = 1 for all N . Therefore
the WGC is satisfied for the U(1)B .

DISCUSSION

In this paper, we showed that there exist large N gauge
theories with the dense low-lying spectrum, and the de-
grees of freedom measured by the central charges grow
linearly in N . We focused on a set of theories given
by 4d N = 1 supersymmetric SU(N) gauge theories.
They provide interesting counter-examples of the com-
monly expected behavior of any large N gauge theories,
namely O(N2) degrees of freedom and sparse spectrum
given by the gauge-invariant operators. Let us make a
few comments regarding this model.
As our models do not have a sparse low-lying spectrum,

it is impossible to have a weakly-coupled Einstein dual in
AdS5. Nevertheless, our models satisfy the AdS version
of the Weak Gravity Conjecture. This can be thought of
as a piece of evidence that the WGC holds for more gen-
eral quantum gravity, instead of being a special property
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The spectrum becomes dense at large N. 
Fill the band between 1 and 3.

The Weak Gravity Conjecture holds.

Central charges grow linearly in N. 
a/c → 1

ΔX = ΔY = N , ΔZ = 2

 form an N=2 chiral multiplet ( ).(Mi, Xi) ℰ

Δ2
X

B2
= 1 <

9CT

40CV,B
=

3N2 − N − 1
2N2

Dense/O(N) theories behaves similar to the Argyres-Douglas theories!  
(“N=1 AD theories”)



Classification & Weak Gravity 
Conjecture



Classifying large N theories

• Let us classify all possible supersymmetric large N gauge theories in 4d with 
the following conditions:


• The gauge group is simple: G=SU(N), SO(N), Sp(N)


• The flavor symmetry is fixed as we take large N limit.


• No superpotential except the flip for the decoupled ops (at the moment).


• In the context of AdS/CFT:  
flavor symmetry of the boundary CFT = gauge symmetry in the bulk. 



Another simple example (no a-maximization)
SU(N) with symmetric tensor

• Another simple example: 
SU(N) with a pair of symmetric 
tensor 


• No need for a-maximization. R-
symmetry fixed by anomaly 
constraint 

• Two types of gauge-invariant ops. 

Figure 8: Dimensions of single-trace gauge-invariant operators including baryons in SU(N)

+ 1 Adj + 2 ( + ) theory. The baryons(red) form another band above the band of

Coulomb branch operators and mesons.

Figure 9: Checking the Weak Gravity Conjecture for SU(N) with 1 adjoint and Nf = 2.

Plot of distances from the origin to the two boundary lines of convex hexagon vs N .

superfields are given as follows:

SU(N) U(1)S U(1)B U(1)A R

Q 0 1 �
(N+2)
Nf

1� (N+2)RS�2
Nf

eQ 0 �1 �
(N+2)
Nf

1� (N+2)RS�2
Nf

S 1 0 1 RS

eS �1 0 1 RS

(3.6)

The gauge-invariant (single-trace) operators of this theory are given by:

– 20 –
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SU(N) U(1)S U(1)R

S 1 RS

-1 RSS̃

N + (N + 2)(RS − 1) = 0 → RS =
2

N + 2

• Tr
�
S eS

�n
, n = 1, . . . , N � 1

• QI
�eSS

�n eQJ , n = 0, . . . , N � 1

• QI
eS
�
S eS

�n
QJ , n = 0, . . . , N � 2

• ✏Q
n1
I1

· · · Q
nN

IN

• ✏ ✏S . . . S
�
QI1QJ1

�
. . .

�
QIkQJk

�
, k = 0, . . . , Nf

The capital letter indices, I, J, . . . , are flavor indices running from 1, . . . , Nf . The operators

listed in the 4th line above are defined in terms of dressed quarks given by

Q
n
I =

(
(S eS)n/2QI n = 0, 2, 4, . . . , 2N � 2

(S eS)(n�1)/2
S eQI n = 1, 3, 5, . . . 2N � 3 .

(3.7)

Here the operators QI
eS
�
S eS

�n
QJ are symmetric in their flavor indices. Also note that, in

the operators ✏ ✏S . . . S
�
QI1QJ1

�
. . .

�
QIkQJk

�
, the two color-indices of the tensor S (as well

as those in
�
QJkQKk

�
) are contracted with di↵erent ✏ tensors. There will also be opera-

tors obtained by considering QI $ eQI and S $ eS. For the sake of brevity, we will not

show them here explicitly. We also passingly note that the operators ✏Q
n1
I1

· · · Q
nN

IN
and

✏ ✏S . . . S
�
QI1QJ1

�
. . .

�
QIkQJk

�
remain rather heavy and therefore never decouple.

Nf = 0 case Let us start with the simplest example with Nf = 0. In this case, there is

only one anomaly-free global symmetry U(1)S , which does not mix with the U(1)R symmetry

owing to it being traceless. The U(1)R is therefore uniquely determined by the anomaly-free

condition as

RS =
2

N + 2
. (3.8)

For this theory, the operator spectrum is simple. We only have the operators Tr(S eS)n and

detS ⌘ ✏ ✏SS · · ·S. The latter one has dimension

�detS =
3

2
N ·RS =

3N

N + 2
(3.9)

which is always greater than 1. On the other hand, the dimension of Tr(S eS)n operators is

given by:

�Tr(S eS)n =
3

2
· 2n ·RS =

6n

N + 2
. (3.10)

Among the Tr(S eS)n operators those with dimension less than or equal to 1 decouple:

6n

N + 2
 1 =) n 

�
N + 2

6

⌫
(3.11)
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• Tr
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�n
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• QI
�eSS

�n eQJ , n = 0, . . . , N � 1

• QI
eS
�
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�
QIkQJk

�
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The capital letter indices, I, J, . . . , are flavor indices running from 1, . . . , Nf . The operators

listed in the 4th line above are defined in terms of dressed quarks given by

Q
n
I =

(
(S eS)n/2QI n = 0, 2, 4, . . . , 2N � 2

(S eS)(n�1)/2
S eQI n = 1, 3, 5, . . . 2N � 3 .

(3.7)

Here the operators QI
eS
�
S eS

�n
QJ are symmetric in their flavor indices. Also note that, in

the operators ✏ ✏S . . . S
�
QI1QJ1

�
. . .

�
QIkQJk

�
, the two color-indices of the tensor S (as well

as those in
�
QJkQKk

�
) are contracted with di↵erent ✏ tensors. There will also be opera-

tors obtained by considering QI $ eQI and S $ eS. For the sake of brevity, we will not

show them here explicitly. We also passingly note that the operators ✏Q
n1
I1

· · · Q
nN

IN
and

✏ ✏S . . . S
�
QI1QJ1

�
. . .

�
QIkQJk

�
remain rather heavy and therefore never decouple.

Nf = 0 case Let us start with the simplest example with Nf = 0. In this case, there is

only one anomaly-free global symmetry U(1)S , which does not mix with the U(1)R symmetry

owing to it being traceless. The U(1)R is therefore uniquely determined by the anomaly-free

condition as

RS =
2

N + 2
. (3.8)

For this theory, the operator spectrum is simple. We only have the operators Tr(S eS)n and

detS ⌘ ✏ ✏SS · · ·S. The latter one has dimension

�detS =
3
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N ·RS =

3N

N + 2
(3.9)

which is always greater than 1. On the other hand, the dimension of Tr(S eS)n operators is

given by:
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�
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⌫
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Gauge-invariant operators
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which is always greater than 1. On the other hand, the dimension of Tr(S eS)n operators is

given by:

�Tr(S eS)n =
3

2
· 2n ·RS =

6n

N + 2
. (3.10)

Among the Tr(S eS)n operators those with dimension less than or equal to 1 decouple:

6n

N + 2
 1 =) n 

�
N + 2

6

⌫
(3.11)

– 21 –

• Tr
�
S eS

�n
, n = 1, . . . , N � 1

• QI
�eSS

�n eQJ , n = 0, . . . , N � 1

• QI
eS
�
S eS

�n
QJ , n = 0, . . . , N � 2

• ✏Q
n1
I1

· · · Q
nN

IN

• ✏ ✏S . . . S
�
QI1QJ1

�
. . .

�
QIkQJk

�
, k = 0, . . . , Nf

The capital letter indices, I, J, . . . , are flavor indices running from 1, . . . , Nf . The operators

listed in the 4th line above are defined in terms of dressed quarks given by

Q
n
I =

(
(S eS)n/2QI n = 0, 2, 4, . . . , 2N � 2

(S eS)(n�1)/2
S eQI n = 1, 3, 5, . . . 2N � 3 .

(3.7)

Here the operators QI
eS
�
S eS

�n
QJ are symmetric in their flavor indices. Also note that, in

the operators ✏ ✏S . . . S
�
QI1QJ1

�
. . .

�
QIkQJk

�
, the two color-indices of the tensor S (as well

as those in
�
QJkQKk

�
) are contracted with di↵erent ✏ tensors. There will also be opera-

tors obtained by considering QI $ eQI and S $ eS. For the sake of brevity, we will not

show them here explicitly. We also passingly note that the operators ✏Q
n1
I1

· · · Q
nN

IN
and

✏ ✏S . . . S
�
QI1QJ1

�
. . .

�
QIkQJk

�
remain rather heavy and therefore never decouple.
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Some low-lying operators decouple
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The decoupled operators will be replaced by their corresponding flipped-fields. The dimen-

sions of the remaining Tr(S eS)n operators lie in the region 1 < � < 6 at large N , thus forming

a dense band.

We find that the central charges a and c are given as

a '
95N4 + 199N3 + 39N2

� 164N � 88

72 (N + 2)3
�!
N�1

95

72
N ,

c '
30N4 + 61N3 + 15N2

� 36N � 16

24 (N + 2)3
�!
N�1

5

4
N ,

a

c
�!
N�1

19

18
.

(3.12)

The central charges grow linearly in N . Notice that the ratio of a and c does not converge to

1 at large N .

From the spectral data one can test the WGC. The only chiral operator that is charged

under U(1)S is the operator detS. It has a charge-to-mass ratio given as

qS

�S
=

N + 2

3
, (3.13)

while the flavor central charge CS is given as

CS = �
9

4⇡4

N(N + 1)

2
2 (RS � 1) =

9

4⇡4

N
2(N + 1)

N + 2
. (3.14)

It is easy to see that the detS operator indeed satisfies the WGC

q
2
S

�2
S

=
(N + 2)2

9
�

40CS

9CT
⇠

4

5
, (3.15)

for all N � 2.

Nf = 1 case Let us consider the Nf = 1 case. Now the IR U(1)R symmetry has to be

determined by a-maximization. We find

a ' 1.78014N � 7.88976 ,

c ' 1.75705N � 7.73346 ,

4⇡4
CS ' 8.99994N2

� 15.9092N + 44.5183 ,

4⇡4
CB ' 12.5806N � 14.3088 ,

4⇡4
CA ' 12.1684N3 + 43.0439N2 + 660.400N � 26573.9 ,

RS ' 2.70361/N ,

RQ ' 0.252190 + 2.21983/N ,

(3.16)

for su�ciently large value of N . We plot the ratio of central charges a/c as a function of

N in Figure 10. We also plot the spectrum of operators with dimension 1 < � < 9 at the
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Upon removing these decoupled operators (by flipping or simply subtracting), 
the central charges can be computed to obtain:

Notice that it has a>c. 
cf) SQCD: a<c, N=4 SYM: a=c 

Holographic theory: a=c for large N



The full list of SU(N) 
theories with large N limit. 
(4+16 classes of theories)

N=4 SYM

Theory �matter chiral dense Nf

1 Adj + Nf ( + ) ⇠ N N Y Nf � 1

1 + 1 + Nf ( + ) ⇠ N N Y Nf � 0

1 + 1 + Nf ( + ) ⇠ N N Y Nf � 4

1 + 1 + 8 + Nf ( + ) ⇠ N Y Y Nf � 0

2 + 2 + Nf ( + ) ⇠ 2N N N Nf � 0

1 + 2 + 1 + 8 + Nf ( + ) ⇠ 2N Y N Nf � 0

1 + 1 + 1 + 1 + Nf ( + ) ⇠ 2N N N Nf � 0

1 + 1 + 2 + 8 + Nf ( + ) ⇠ 2N Y N Nf � 0

2 + 2 + 16 + Nf ( + ) ⇠ 2N Y N Nf � 0

1 Adj + 1 + 1 + Nf ( + ) ⇠ 2N N N Nf � 0

2 + 2 + Nf ( + ) ⇠ 2N N N Nf � 0

1 Adj + 1 + 1 + 8 + Nf ( + ) ⇠ 2N Y N Nf � 0

1 Adj + 1 + 1 + Nf ( + ) ⇠ 2N N N Nf � 0

2 Adj + Nf ( + ) ⇠ 2N N N Nf � 0

1 ( + ) + 2 ( + ) + Nf ( + ) ⇠ 3N N N 0  Nf  2

3 + 3 + Nf ( + ) ⇠ 3N N N 0  Nf  6

1 Adj + 2 + 2 + Nf ( + ) ⇠ 3N N N 0  Nf  4

1 Adj + 1 ( + ) + 1 ( + ) ⇠ 3N N N ·

2 Adj + 1 + 1 + Nf ( + ) ⇠ 3N N N 0  Nf  2

3 Adj ⇠ 3N N N ·

Table 2: List of all possible SU(N) theories with large N limit and fixed global symmetry.

�matter denotes the contribution to the 1-loop beta function from the chiral multiplets. It has

to be less than 3N to be asymptotically free. The last column denotes the condition for the

theory to have a superconformal fixed point. For all the cases we assume Nf ⌧ N . We omit

the theories that can be obtained via complex conjugation of the matter representations in

the theories listed here.
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N=2 SCFT (for Nf = 4)

[Agarwal, Lee, JS]



Theory �matter dense spectrum Nf

1 + Nf ⇠ N Y Nf � 0

1 + Nf ⇠ N Y Nf � 1

2 + Nf ⇠ 2N N Nf � 0

1 + 1 +Nf ⇠ 2N N Nf � 0

2 + Nf ⇠ 2N N Nf � 0

3 ⇠ 3N N ·

Table 3: List of all possible SO(N) theories with large N limit with a fixed flavor symmetry.

�matter denotes the contribution to the 1-loop beta function from the matter multiplets. It

has to be less than 3(N�2) to be asymptotically free. The last column refers to the condition

for the theory to flow to a non-trivial SCFT in the IR. We always assume Nf ⌧ N .

Coulomb branch operators: TrSn, n = 1, . . . , N

Mesons: QIS
n
QJ , n = 2, . . . , N � 1

Here the indices I, J runs from 1 to Nf . For this model, we obtain non-trivial fixed point for

Nf � 0.

Nf = 0 case Let us start with the simplest case. There is no fundamental chiral multiplet

and the R-charge is already determined by anomaly-free condition to be RS = 4
N+2 . There is

no anomaly-free (continuous) flavor symmetry. The classical U(1) flavor symmetry acting on

S is anomalous and therefore breaks down to Z2N+4 . The only gauge-invariant (single-trace)

operator is of the form S
n with n = 1, 2, . . . , N , with it’s dimension being

�Sn =
3

2
nRS =

6n

N + 2
. (4.2)

Some of the Coulomb branch operators Sn can decouple along the RG flow since they violate

the unitarity bound when

n <

�
N + 2

6

⌫
. (4.3)

When this happens, we introduce a flip field, which would have dimension 3� 6n
N+2 to remove

the decoupled operator. We see that at large N , the Coulomb branch operators and the flip

fields fill the band of conformal dimension 1 < � < 6.
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Theory �matter dense spectrum Nf

1 + 2Nf ⇠ N Y Nf � 1

1 + 2Nf ⇠ N Y Nf � 4

2 + 2Nf ⇠ 2N N Nf � 0

1 + 1 + 2Nf ⇠ 2N N Nf � 0

2 + 2Nf ⇠ 2N N Nf � 0

2 + 1 + 2Nf ⇠ 2N N 0  Nf  2

1 + 2 + 2Nf ⇠ 2N N 0  Nf  4

3 + 2Nf ⇠ 3N N Nf  6

3 ⇠ 3N N ·

Table 4: List of all possible Sp(N) theories with large N limit and fixed global symmetry.

�matter denotes the contribution to the 1-loop beta function from the chiral multiplets. It has

to be less than 3N + 3 to be asymptotically free. The last column denotes the condition for

the theory to have a superconformal fixed point. For all the cases we assume Nf ⌧ N .

5.1 1 symmetric and 2Nf fundamentals

1 + 2Nf : There is an anomaly-free global U(1)B under which the symmetric field

S and fundamental Q carry charges 1 and �(N + 1)/Nf respectively. The (single-trace)

gauge-invariant operators are given as follows:

1 Coulomb branch operators: Tr (⌦S)2n, n = 1, . . . , N

Nf (2Nf + 1) Symmetric mesons: QI (⌦S)
2n+1⌦QJ , n = 0, . . . , N � 1

Nf (2Nf � 1) Antisymmetric mesons: QI (⌦S)
2n⌦QJ , n = 0, . . . , N � 1

Here we omitted the gauge indices as before and I, J denote the flavor indices 1, . . . , 2Nf .

Note that gauge indices are contracted via the Sp(N) invariant skew-symmetric matrix

⌦ =

 
0 �IN

IN 0

!
. (5.2)

Also note that any baryonic operators are multi-trace operators because the ✏ tensor can be

decomposed into products of ⌦ in the Sp(N) group.
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SO(N) theories

Sp(N) theories

N=2 SCFT for Nf = 0



Feature 3: Multiple bands
eg) SU(N) + 1 adj + Nf=2

adjoints up to N(N � 1)/2 which gives a width of the baryonic band to be of O(N). These

additional baryons form the second band above the band formed by the Coulomb branch

operators, the mesonic operators and the flipped fields. We show the band formed by the

baryonic operators explicitly in Figure 8.
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Figure 8: Dimensions of single-trace gauge-invariant operators including baryons in SU(N)

+ 1 Adj + 2 ( + ) theory. The baryons(red) form another band above the band of

Coulomb branch operators and mesons.

Let us now check the AdS version of the Weak Gravity Conjecture for this case. As

before, we would like to consider the decay of an arbitrarily charged black hole into three

species of light particles corresponding to the CFT operators given by the lightest meson

(QI�n eQJ) for some n, the lightest baryon (of the form Q
N�N(N/2�1) for N even), and the

lightest anti-baryon (of the form eQN�N(N/2�1) for N even). They form a hexagon on the

plane of QA,B/� similar to the one appeared in Nf = 1 theory. We checked that the Nf = 2

model also satisfies the convex hull condition as is depicted in Figure 9.

3.2 One symmetric and Nf fundamentals

1 ( + ) + Nf ( + ): There are 3 anomaly free global U(1)’s in addition to the

U(1)R symmetry. The respective charges for the various chiral superfields are given as follows:

SU(N) U(1)S U(1)B U(1)A R

Q 0 1 �
(N+2)
Nf

1� (N+2)RS�2
Nf

eQ 0 �1 �
(N+2)
Nf

1� (N+2)RS�2
Nf

S 1 0 1 RS

eS �1 0 1 RS

(3.6)

The gauge-invariant (single-trace) operators of this theory are given by:
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The ratio of central charges  
a/c does not go to 1.

We see the secondary 
band of size O(N). They 
are formed by ‘baryons’.

Supersymmetric analog  
of ‘band’ theory?

2

charge in the IR we have to invoke ‘a-maximization’ [10],
which states that the correct IR R-charge maximizes the
a-function. The central charges for 4d SCFT can be writ-
ten in terms of trace anomalies [11]:

a =
3

32

�
3TrR3

� TrR
�
, c =

1

32

�
9TrR3

� 5TrR
�

(2)

Now the R-charge is fixed by evaluating @a
@R = 0, @2a

@R2 < 0.
An additional caveat arises from the fact that all the

operators must satisfy the unitarity constraint: Any
gauge-invariant chiral operators should have a scaling
dimension � greater than 1. During the course of a-
maximization, it often happens that the resulting value
of R-charges causes certain chiral operator dimensions to
drop to 1 or lower. This indicates that the corresponding
operator gets decoupled along the renormalization group
flow. Its contribution to the a-function must then be re-
moved, following which a-maximization has to be redone
[12]. This cycle needs to be iterated over until no more
operators decouple. One way to deal with the decoupled
operator is to introduce a ‘flip field’ XO for each would-
be decoupled operator O and add a superpotential term
W = XOO. The F-term for XO removes the free O from
the chiral ring [12–14].

A BAND OF DENSE SPECTRUM

Now, let us study the spectrum of this theory. The
(single-trace) gauge-invariant operators of this theory are
given as follows:

• Coulomb branch operators: �n, 2  n  N

• dressed mesons: Q�n eQ, 0  n  N � 1

• ‘baryon’: Q(�Q)(�2Q) . . . (�N�1Q)

• ‘anti-baryon’: eQ(� eQ)(�2 eQ) . . . (�N�1 eQ)

We suppressed the gauge indices in the above expression.
Let us remark that the chiral operators charged under
U(1)B (that we call baryon) have a very large engineer-
ing dimension. We now have to repeatedly a-maximize
and remove gauge-invariant operators whose scaling di-
mensions fall below the unitarity bound � > 1.
We find that some of the Coulomb branch operators

�n with n = 2, 3, . . . N get decoupled and are replaced
by corresponding flip fields, but not all of them are de-
coupled for N > 12. Most of the dressed mesons remain
coupled, but some of the low-lying ones hit the unitarity
bound and get decoupled. We find none of the ‘baryons’
decouple along the renormalization group flow.
Due to the peculiarities arising from the pattern of de-

coupling of operators, it is somewhat technical to estab-
lish an analytical handle on the large-N behavior of our
theory. For now, we su�ce ourselves with a numerical

FIG. 1. Plot of a/c vs N . The orange line fits the plot with
a/c ' �0.152/N + 0.998.

analysis of all gauge theories with 2  N  300. Upon
doing so, we obtain the IR central charges a, c behaves
approximately as

a ' 0.4992N � 0.1915 , (3)

c ' 0.5003N � 0.1460 . (4)

We see that the central charges grow linearly in the rank
of gauge group N , which is in stark contrast to the
UV central charges given as O(N2). This is due to the
very large quantum renormalization e↵ect caused by the
strong-coupling dynamics. We plot the ratio of central
charges a/c as a function of N in figure 1. It is clear that
the a/c approaches 1 in the large N limit, which is one
of the necessary conditions for a ‘holographic’ theory.

FIG. 2. Plot of scaling dimension of the lightest operator �1

vs N

The scaling dimension of the ‘lightest’ operator �1 in
the spectrum (the operator with the lowest scaling di-
mension) as a function of N is depicted in figure 2. The
lightest operator turns out to be given by the operator
Tr�n for some n when N > 12.

We plot the ratio a/c in Figure 6. As was the case for the Nf = 1 theory, we find that this

time too, a/c approaches a value close to 1 but stays strictly smaller than 1. Similarly, the

band formed by the Coulomb branch operators, the dressed mesons and the flipped fields is

shown in Figure 7.
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0.9350

0.9355
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0.9365

Figure 6: Plot of a/c vs N for the SU(N) theory with 1 adjoint and Nf = 2. The orange

curve fits the plot with a/c ⇠ 0.936734 � 0.162684/N .

Figure 7: Dimensions of single-trace gauge-invariant operators in SU(N) + 1 Adj + 2 (

+ ) theory. They form a band between 1 < � < 3.

However, the spectrum of the Nf = 2 theory also shows an interesting feature that was

not present in the Nf = 1 theory. Note that unlike the Nf = 1 theory where there was just

one baryon and and one anti-baryon, in the Nf = 2 case, we have many di↵erent baryons

in addition to QI(�QI)(�2
QI) · · · (�N�1

QI) with I = 1, 2. One can form a gauge-invariant

operators formed out of N quarks by combining Q1 and Q2 to reduce the number of adjoints.

For example, we have Q1Q2(�Q1)(�Q2) · · · (�N/2
Q1)(�N/2

Q2) for even N , which is the one

with the smallest number of adjoint N/2(N/2� 1). Other baryonic operators can have more
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Sparse vs Dense spectrum

Figure 1: Illustration of the sparse and dense spectrum of large N theories. Here we show

3 possible scenarios. The left one depicts the scaling dimension of the single trace gauge-

invariant operators for the sparse case. The spacing between the operator dimensions scales

asO(1) at largeN . We find two distinct cases for the dense theory. One can have a dense band

of low-lying operators and discrete spectrum of heavy operators. The other case comes with

multiple bands with an O(N) gap between the bands For the theories with dense spectrum,

the spacing between the operator dimensions in a band scales as O(1/N).

scales as 1/N so that the spectrum becomes e↵ectively continuous at large N . See figure 1

for illustration. As is shown in the figure, it is possible to have one band of low-lying single-

trace operators or more than one bands. Within a band, the gap in the scaling dimensions

of the operators goes like 1/N . This is due to very large quantum corrections to the scaling

dimension of the matter fields (adjoint or rank-2 tensors), which makes it nearly zero in large

N . For example, in the adjoint SQCD, the gauge-invariant operators of the form Q�j
Q̃ or

�j with adjoint � gives a dense spectrum since the dimension of � is of O(1/N).

It is possible to understand the appearance of the dense spectrum by looking at the

anomaly constraint. The anomaly-free condition for the U(1)R symmetry requires

T (adj) +
X

i

T (Ri)(ri � 1) = 0 , (2.3)

where i runs over all chiral multiplets with representationRi and the superconformal R-charge

is given by ri. In order to cancel the anomaly caused by the gaugino (T (adj) = O(N)), we

need to have the second term of order O(N). Under our assumption that the number of

fundamentals are of O(1), the dominant contribution for the second term should therefore

come from the rank 2 tensors which has T (R) = O(N).4 Requiring the R-charge to be

4It may happen that the R-charge of the fundamentals is O(N), hence making it possible for the funda-
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Out of 35 classes of all possible 
large N gauge theories, 8 of 

them have dense spectrum and 
the rest have sparse spectrum. 

Sparse: The gap is O(1)

Dense: The gap is O(1/N)



When do we have a dense spectrum?

• Large N SUSY gauge theory with a dense spectrum is rather common. 


• This is the case when the matter representation is ‘small’. 


• This is equivalent to having the 1-loop beta function coefficient to be ‘large’.  



• The R-charges (dimensions) for the rank 2 tensor matters scale as , 
which also results in . Typically  does NOT asymptotes to 1. 


• The gauge-invariant operators formed out of rank 2 tensors are responsible for 
the dense spectrum. 

∑ T(Ri) ∼ h∨ + O(1)

b0 = 3h∨ − ∑ T(Ri)

1/N
a ∼ c ∼ O(N) a/c

Dense spectrum = O(N) degrees of freedom 



The dense model does not satisfy the criterions to have a 
semiclassical gravity dual. Not a ‘Holographic CFT’. 

Nevertheless, AdS/CFT tells us that it is dual to a ‘some’ 
quantum gravity in AdS. 

What kind of bulk theory is it?  

I do not know.  

But it still satisfies a property that is believed to be true in 
any (non-AdS) quantum gravity.



Weak Gravity Conjecture in Anti-de Sitter space

• The Weak Gravity Conjecture (WGC) asserts that a light charged particle 
should exist in any consistent Quantum theory of Gravity. 


• It allows the extremal black holes to decay (so that we do not have any 
absolutely stable remnants). 


• In AdS/CFT, it can be translated into the existence of an operator with the 
ratio of scaling dimension and charges below the ratio of central charges. 

3

We visualize the band of operator spectrum by plot-
ting the dimensions of the chiral operators for each N in
figure 3. Here we do not include the baryon and anti-

FIG. 3. Dimensions of the ‘single-trace’ operators form a band
between 1 and 3.

baryon operators, which are generally heavy (�B ⇠ N)
and lie above the band. We find that the gap between
the dimensions of the operators goes like O(1/N). From
this, we see that at large-N , the operator spectrum of
the theory densely fills a narrow band of low conformal
dimensions between 1 and 3.

TESTING THE WEAK GRAVITY CONJECTURE

Given that the theory described above is not expected
to have a weakly coupled gravity dual, it is interesting
to check if its spectrum satisfies the bounds implied by
the Weak Gravity Conjecture (WGC) [8]. The impli-
cations of the WGC in AdS/CFT were proposed in [9].
There the authors argued that the WGC is essentially
equivalent to requiring that extremal non-BPS Reissner-
Nordström (RN) black holes in AdS must be unstable.
Depending on the mechanism behind the decay of these
black holes, they arrive at di↵erent bounds. The sim-
plest of these comes from requiring that there should be
a light charged particle to which even the smallest ex-
tremal AdS-RN black holes can decay. In the dual CFT,
this implies that the spectrum should contain an operator
with dimension � and charge q such that

�2

q2


9CT

40CV
, (5)

where CT and CV are the coe�cients appearing in the
two-point functions of the energy-momentum tensor and
the corresponding flavor current, respectively. For a 4d
N = 1 SCFT, we can compute the coe�cients by com-
puting the trace anomalies as CT ⇠ TrR3 and CV ⇠

TrRF 2 where F is the flavor symmetry generator.

There are two U(1) flavor symmetries in our theory,
that we label as U(1)A and U(1)B . We test the WGC
for the two flavor symmetry. We can estimate how the
coe�cients grow in N using the trace anomaly formula
and using the fact R� ⇠ 1/N to get

CT ⇠ O(N), (6)

CV,A ⇠ 2N(RQ � 1)N2 +N2(R� � 1) ⇠ O(N3), (7)

CV,B ⇠ 2N(RQ � 1) ⇠ O(N). (8)

Therefore we obtain CT
CV,A

⇠ O(1/N2) and CT
CV,B

⇠ O(1).

The lightest operator is charged under the U(1)A sym-
metry. Upon plotting �2/q2 of the lightest chiral oper-
ator in the theory against the ratio 9CT /40CV,A in fig-
ure 4, we see that indeed the WGC bound is satisfied.
For the U(1)B , we have ‘baryon’ and ‘anti-baryon’ with

FIG. 4. Test of the Weak Gravity Conjecture for U(1)A. Red:
9CT /40CV,A, Blue: �2

/q
2 for the lightest charged operators

under U(1)A.

charge B = ±N , and we plot the �2/B2 against the ra-
tio of CT and CV,B in figure 5. We also find that the
WGC bound is satisfied by this operator.
A second weaker bound was also obtained in [9] by

considering the decay of AdS black holes through scalar
hair formation. For small extremal black holes, this gives

(�� 2)2

q2


9CT

40CV
, (9)

which being a weaker bound is automatically satisfied
by the lightest chiral operator in our theories. Slightly
stronger bounds than (5) are obtained by considering the
formation of scalar-hair for intermediate (r+ ⇠ LAdS)
and large (r+ � LAdS) sized black holes. The respective
conditions are:

4(�� 2)2

3q2


9CT

40CV
, (10)

3(�� 1)(�� 3)

2q2


9CT

40CV
. (11)

[Nakayama, Nomura]

[Arkani-Hamed, Motl, Nicolis, Vafa]



Checking the WGC for SU(N) + adj + Nf=1 theory

3

We visualize the band of operator spectrum by plot-
ting the dimensions of the chiral operators for each N in
figure 3. Here we do not include the baryon and anti-

FIG. 3. Dimensions of the ‘single-trace’ operators form a band
between 1 and 3.

baryon operators, which are generally heavy (�B ⇠ N)
and lie above the band. We find that the gap between
the dimensions of the operators goes like O(1/N). From
this, we see that at large-N , the operator spectrum of
the theory densely fills a narrow band of low conformal
dimensions between 1 and 3.

TESTING THE WEAK GRAVITY CONJECTURE

Given that the theory described above is not expected
to have a weakly coupled gravity dual, it is interesting
to check if its spectrum satisfies the bounds implied by
the Weak Gravity Conjecture (WGC) [8]. The impli-
cations of the WGC in AdS/CFT were proposed in [9].
There the authors argued that the WGC is essentially
equivalent to requiring that extremal non-BPS Reissner-
Nordström (RN) black holes in AdS must be unstable.
Depending on the mechanism behind the decay of these
black holes, they arrive at di↵erent bounds. The sim-
plest of these comes from requiring that there should be
a light charged particle to which even the smallest ex-
tremal AdS-RN black holes can decay. In the dual CFT,
this implies that the spectrum should contain an operator
with dimension � and charge q such that

�2

q2


9CT

40CV
, (5)

where CT and CV are the coe�cients appearing in the
two-point functions of the energy-momentum tensor and
the corresponding flavor current, respectively. For a 4d
N = 1 SCFT, we can compute the coe�cients by com-
puting the trace anomalies as CT ⇠ TrR3 and CV ⇠

TrRF 2 where F is the flavor symmetry generator.

There are two U(1) flavor symmetries in our theory,
that we label as U(1)A and U(1)B . We test the WGC
for the two flavor symmetry. We can estimate how the
coe�cients grow in N using the trace anomaly formula
and using the fact R� ⇠ 1/N to get

CT ⇠ O(N), (6)

CV,A ⇠ 2N(RQ � 1)N2 +N2(R� � 1) ⇠ O(N3), (7)

CV,B ⇠ 2N(RQ � 1) ⇠ O(N). (8)

Therefore we obtain CT
CV,A

⇠ O(1/N2) and CT
CV,B

⇠ O(1).

The lightest operator is charged under the U(1)A sym-
metry. Upon plotting �2/q2 of the lightest chiral oper-
ator in the theory against the ratio 9CT /40CV,A in fig-
ure 4, we see that indeed the WGC bound is satisfied.
For the U(1)B , we have ‘baryon’ and ‘anti-baryon’ with
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FIG. 4. Test of the Weak Gravity Conjecture for U(1)A. Red:
9CT /40CV,A, Blue: �2

/q
2 for the lightest charged operators

under U(1)A.

charge B = ±N , and we plot the �2/B2 against the ra-
tio of CT and CV,B in figure 5. We also find that the
WGC bound is satisfied by this operator.
A second weaker bound was also obtained in [9] by

considering the decay of AdS black holes through scalar
hair formation. For small extremal black holes, this gives

(�� 2)2

q2


9CT

40CV
, (9)

which being a weaker bound is automatically satisfied
by the lightest chiral operator in our theories. Slightly
stronger bounds than (5) are obtained by considering the
formation of scalar-hair for intermediate (r+ ⇠ LAdS)
and large (r+ � LAdS) sized black holes. The respective
conditions are:

4(�� 2)2

3q2
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40CV
, (10)

3(�� 1)(�� 3)

2q2


9CT

40CV
. (11)
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FIG. 5. Test of the Weak Gravity Conjecture for U(1)B . Red:
9CT /40CV,B , Blue: �2

/q
2 for the baryon operators charged

under U(1)B .

We checked that these conditions are also satisfied by
the lightest chiral operator in our theory for the case of
U(1)A and by the baryon operator in the case of U(1)B .
Therefore, it follows that our theory is indeed concordant
with the Weak Gravity Conjecture despite it having a
dense spectrum of light states.

ANOTHER MODEL: SU(N) THEORY FLOWING
TO THE ARGYRES-DOUGLAS THEORY

Let us consider SU(N) super Yang-Mills with a pair of
fundamental/anti-fundamental chiral multiplets (Q, eQ),
a single adjoint chiral multiplet � and two set of (N � 1)
gauge singlets Xi,Mi coupled via superpotential cou-
plings that flip all the Coulomb branch operators Tr�n+1,
as well as the dressed mesons TrQ�n�1 eQ for all 1  n 

N � 1. The superpotential is given by

W =
N�1X

i=1

XiTr�
i+1 +MiTrQ�i�1 eQ. (12)

The spectrum of chiral operators (both in the UV and
IR) in this case is simply given by Xi,Mi 81  i  N �1
in addition to the operator Q�N�1 eQ which becomes the
‘moment-map’ operator in the IR.

It is known that this theory flows to the (A1, A2N�1)
Argyres-Douglas (AD) theories [15, 16] at its IR fixed
point [17, 18]. We can therefore simply borrow the known
results for AD theories to understand the growth of the
central charges and operator scaling dimensions as a func-
tion of N . Thus the IR central charges are given by:

a =
12N2

� 5N � 5

24(N + 1)
, c =

3N2
�N � 1

6(N + 1)
. (13)

As is the case of the previous example without flipping all
the Coulomb branch operators and the dressed mesons,

we see that the IR central charges grow linearly with N
such that a, c ⇠ 0.5N and a/c ⇠ 1 at large-N . The
scaling dimensions of Mi and Xi are given by [19]

�Mi =
2N � i+ 1

N + 1
, �Xi =

3N � i+ 2

N + 1
, (14)

with i = 1, . . . , N � 1. A pair of N = 1 chiral multiplets
(Mi, Xi) form anN = 2 chiral multiplet, with the bottom
component given by the scalar component of Mi.
We see that the lightest chiral ring operator is given

by MN�1 while the heaviest chiral ring operator is given
by X1. As before, the scaling dimension of the lightest
operator is only infinitesimally greater than 1 at large-N .
Meanwhile, the gap in the scaling dimensions of the light-
est and the second lightest operator decays as O(1/N),
indicating the formation of a continuous band of opera-
tors with low conformal dimensions. We can also see this
from the fact that the gap between the dimensions of the
heaviest and lightest operator asymptotes to 2 while the
number of chiral operators in the interacting sector grows
linearly at large-N .
The IR fixed point of this theory has enhanced N = 2

supersymmetry and U(1)A ⇥ U(1)R symmetry gets en-
hanced to SU(2)R ⇥ U(1)r. The U(1)B remains as the
flavor symmetry of the theory with the moment-map
operator given as Z ⌘ Q�N�1 eQ. If we denote the
(anti)-baryon operator as X ⌘ QN�N(N�1)/2 and Y ⌘

eQN�N(N�1)/2, there is a relation given by XY = ZN .
They parametrize the Higgs branch of the theory, which
is given by C2/ZN .
The operator X,Y has scaling dimension N (which is

consistent with the fact that �Z = 2) and U(1)B charge

±N . We find that the 9CT
40CV,B

= 3N2
�N�1
2N2 > 1 in the

large-N limit, whereas �2/B2 = 1 for all N . Therefore
the WGC is satisfied for the U(1)B .

DISCUSSION

In this paper, we showed that there exist large N gauge
theories with the dense low-lying spectrum, and the de-
grees of freedom measured by the central charges grow
linearly in N . We focused on a set of theories given
by 4d N = 1 supersymmetric SU(N) gauge theories.
They provide interesting counter-examples of the com-
monly expected behavior of any large N gauge theories,
namely O(N2) degrees of freedom and sparse spectrum
given by the gauge-invariant operators. Let us make a
few comments regarding this model.
As our models do not have a sparse low-lying spectrum,

it is impossible to have a weakly-coupled Einstein dual in
AdS5. Nevertheless, our models satisfy the AdS version
of the Weak Gravity Conjecture. This can be thought of
as a piece of evidence that the WGC holds for more gen-
eral quantum gravity, instead of being a special property

The Weak Gravity Conjecture is satisfied!

Red: Upper bound from the WGC Blue: Lightest charged chiral operator under U(1)A  
(‘meson’ or its flip field) and U(1)B (‘baryon’)
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ting the dimensions of the chiral operators for each N in
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baryon operators, which are generally heavy (�B ⇠ N)
and lie above the band. We find that the gap between
the dimensions of the operators goes like O(1/N). From
this, we see that at large-N , the operator spectrum of
the theory densely fills a narrow band of low conformal
dimensions between 1 and 3.

TESTING THE WEAK GRAVITY CONJECTURE

Given that the theory described above is not expected
to have a weakly coupled gravity dual, it is interesting
to check if its spectrum satisfies the bounds implied by
the Weak Gravity Conjecture (WGC) [8]. The impli-
cations of the WGC in AdS/CFT were proposed in [9].
There the authors argued that the WGC is essentially
equivalent to requiring that extremal non-BPS Reissner-
Nordström (RN) black holes in AdS must be unstable.
Depending on the mechanism behind the decay of these
black holes, they arrive at di↵erent bounds. The sim-
plest of these comes from requiring that there should be
a light charged particle to which even the smallest ex-
tremal AdS-RN black holes can decay. In the dual CFT,
this implies that the spectrum should contain an operator
with dimension � and charge q such that

�2

q2


9CT

40CV
, (5)

where CT and CV are the coe�cients appearing in the
two-point functions of the energy-momentum tensor and
the corresponding flavor current, respectively. For a 4d
N = 1 SCFT, we can compute the coe�cients by com-
puting the trace anomalies as CT ⇠ TrR3 and CV ⇠

TrRF 2 where F is the flavor symmetry generator.

There are two U(1) flavor symmetries in our theory,
that we label as U(1)A and U(1)B . We test the WGC
for the two flavor symmetry. We can estimate how the
coe�cients grow in N using the trace anomaly formula
and using the fact R� ⇠ 1/N to get

CT ⇠ O(N), (6)

CV,A ⇠ 2N(RQ � 1)N2 +N2(R� � 1) ⇠ O(N3), (7)

CV,B ⇠ 2N(RQ � 1) ⇠ O(N). (8)

Therefore we obtain CT
CV,A

⇠ O(1/N2) and CT
CV,B

⇠ O(1).

The lightest operator is charged under the U(1)A sym-
metry. Upon plotting �2/q2 of the lightest chiral oper-
ator in the theory against the ratio 9CT /40CV,A in fig-
ure 4, we see that indeed the WGC bound is satisfied.
For the U(1)B , we have ‘baryon’ and ‘anti-baryon’ with

FIG. 4. Test of the Weak Gravity Conjecture for U(1)A. Red:
9CT /40CV,A, Blue: �2

/q
2 for the lightest charged operators

under U(1)A.

charge B = ±N , and we plot the �2/B2 against the ra-
tio of CT and CV,B in figure 5. We also find that the
WGC bound is satisfied by this operator.
A second weaker bound was also obtained in [9] by

considering the decay of AdS black holes through scalar
hair formation. For small extremal black holes, this gives

(�� 2)2

q2


9CT

40CV
, (9)

which being a weaker bound is automatically satisfied
by the lightest chiral operator in our theories. Slightly
stronger bounds than (5) are obtained by considering the
formation of scalar-hair for intermediate (r+ ⇠ LAdS)
and large (r+ � LAdS) sized black holes. The respective
conditions are:

4(�� 2)2

3q2


9CT

40CV
, (10)

3(�� 1)(�� 3)

2q2


9CT

40CV
. (11)

CT

CV,A
∼ O ( 1

N2 ) CT

CV,B
∼ O (1)



WGC for the multiple U(1)’s

• It was pointed out that we need a stronger condition when there are multiple U(1)’s.  
[Cheung-Remmen]


• Consider an arbitrary charged extremal black hole with charge vector and mass 
 that decays via charged particles with charges and masses . Then 

• Then the charge to mass ratio can be written as (in appropriate unit) 
 
 


• The extremal black hole satisfies  and we have the mass fraction . 

This gives the convex hull condition. 

( ⃗Q , M) ( ⃗q i, mi)

| ⃗Z | = 1 ∑
i

σi < 1

with respect to any other gauge interaction, such that no absolutely stable remnants may exist

after black holes evaporate [8]. These results were extended to the case of AdS background

in [9]. There the authors argued that the equivalent statement is that non-BPS Reissner-

Nordström black holes are unstable and examined the implications of the black hole decay

on the boundary CFT. Depending upon the mode of black hole decay, they arrive at a set of

bounds for the spectrum of the boundary CFT. The simplest of these bounds states that the
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where F and R are flavor and R-symmetry generators.

When the flavor symmetry of the boundary CFT is a product over multiple U(1)s, one

needs to consider the decay of arbitrarily charged black holes in the dual theory. Requiring

that black holes with an arbitrary charge vector should still not leave any stable remnants,

leads to the so called “convex-hull condition” [37]. The convex-hull condition can be obtained

as follows. Consider an extremal black hole of mass M and charge ~Q, where each component

of ~Q denotes the charge with respect to the corresponding U(1), with proper normalization.

The WGC demands that there is no absolutely stable remnants with any combination of

charges. Suppose we have a charge-to-mass ratio vector ~Z = ~Q/M that decays into a set of

particles with mass and charges (mi, ~qi) with multiplicity ni. Then we have
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with ~zi = ~qi/mi and �i = nimi/M . We have
P

i �i < 1 so that it defines a convex-hull

generated by the charge-to-mass ratio vectors ~zi that comes from the decay channel. On the

other-hand, the extremal black hole satisfies |~Z| = 1. This region is not necessarily inside the

convex-hull region even if we have |~zi| > 1 for each i. Therefore we have a more stringent

condition than just requiring the individual U(1)’s to satisfy the WGC.

We will show that all of our ‘exotic’ theories with dense spectrum satisfy (the convex-hull

version of) the Weak Gravity Conjecture for su�ciently large N , even though we do not have

a clear interpretation in terms of black hole decay in the (highly quantum and stringy) AdS

dual in the bulk. Sometimes we find the WGC to hold even for a small value of N . However,
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Checking the WGC for the ‘dense’ theory

Meson

Baryon

Anti-baryon

-1.5 -1.0 -0.5 0.5 1.0 1.5

9

40

CT

CA

QA

�

-1.0

-0.5

0.5

1.0

9

40

CT

CB

QB

�

Figure 4: The figure depicts the vector space of charge-to-dimension ratios. The linear

combination of lightest meson, baryon, anti-baryon and their conjugate states fill a convex

hexagon. It should include the unit circle to satisfy the convex hull condition.

Figure 5: Checking the Weak Gravity Conjecture for SU(N) with 1 adjoint and Nf = 1.

Plot of distances from the origin to the two boundary lines of convex hexagon vs N .

were numerically found to follow the trend given by:

a ' 0.942332N � 1.99045

c ' 1.00599N � 1.95771

4⇡4
CA ' 20.5910N3 + 42.5137N2

� 395.380N + 18443.1

4⇡4
CB ' 26.8682N � 40.6757

R� ' 1.47931/N

RQ ' 0.253576 + 1.16629/N ,

(3.5)
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The WGC satisfied for the most examples we studied. 

Figure 11: The spectrum of (single-trace) gauge-invariant operators for the SU(N) theory

with one symmetric and one fundamental flavors. It has a dense band between 1 < � < 9.

Figure 12: The linear combination of gauge-invariant operators and their conjugates form a

polyhedron in charge-to-dimension ratio space normalized by
q

9
40

CT

CF
. They have 18 surfaces

and 14 vertices.

3.3 One anti-symmetric and Nf fundamentals

1 + 1 + Nf ( + ): There are 3 anomaly free global U(1)’s and a U(1)R symmetry

under which the matter multiplets are charged as follows:

SU(N) U(1)S U(1)B U(1)A R

Q 0 1 �
(N�2)
Nf

1� (N�2)RA+2
Nf

eQ 0 �1 �
(N�2)
Nf

1� (N�2)RA+2
Nf

A 1 0 1 RA

eA �1 0 1 RA

(3.17)
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SU(N) + 1 adj + Nf=1 SU(N) + 1 Sym + Nf=1



Why is the WGC true in a non-holographic theory?

• The argument for the WGC is from a semi-classical reasoning based on black 
hole in Einstein gravity. 


• No obvious reason for this to hold in a generic CFT. 


• In AdS3 = CFT2, modular invariance implies the WGC.


• Is it still the case in higher-dimensional CFT/AdS?


• A ‘counter-example’: SQCD in the Veneziano limit Nc, Nf → ∞, Nc/Nf = α

[Montero, Shiu, Soler] 
[Dyer, Fitzpatrick, Xin] 

[Bae, Lee, JS]

[Nakayama, Nomura]



A counter example for the WGC?
- SU(N) + 1S + 1AS + 1□ + 9 □

(a) (b) (c)

Figure 28: Charge-to-mass ratio of light states dual to the gauge-invariant operators. They

fill a polyhedron with (a) 16 surfaces and 10 vertices for N � 29, (b) 18 surfaces and 12

vertices for odd N  29 and (c) 16 surfaces and 12 vertices for even N  28.

Figure 29: Plot of the shortest distance from origin to the boundary surfaces of polyhedron

in charge-to-dimension space. The chiral ring operators do not satisfy the WGC at N  12.

satisfied:

(N + 2)⇥N + (N � 2)⇥N +N  3(N � 2). (4.1)

Here NR denotes the number of chiral multiplets in representation R. All possible SO(N)

theories that can have large N limit with a fixed flavor symmetry are listed in Table 3. The

first two of these exhibit a dense spectrum of operators. We study these theories in detail in

the following sub-sections.

4.1 1 symmetric and Nf fundamentals

1 + Nf : This theory has 1 anomaly-free global symmetry that we call U(1)B under

which the symmetric field S and fundamental Q have charges given by 1 and �(N + 2)/Nf .

The schematic form of the gauge-invariant operators are

– 35 –

We do not find a set of chiral (BPS) operators that satisfy the WGC for small value of N. 

Possible interpretations:

1. There is an operator that we’re missing in the non-BPS sector, which makes the WGC valid.

2. There might be a weak version of the WGC that holds for small N.

3. WGC cease to hold at highly quantum & stringy regime. 

(a) (b) (c)

Figure 28: Charge-to-mass ratio of light states dual to the gauge-invariant operators. They

fill a polyhedron with (a) 16 surfaces and 10 vertices for N � 29, (b) 18 surfaces and 12

vertices for odd N  29 and (c) 16 surfaces and 12 vertices for even N  28.
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Figure 29: Plot of the shortest distance from origin to the boundary surfaces of polyhedron

in charge-to-dimension space. The chiral ring operators do not satisfy the WGC at N  12.

satisfied:

(N + 2)⇥N + (N � 2)⇥N +N  3(N � 2). (4.1)

Here NR denotes the number of chiral multiplets in representation R. All possible SO(N)

theories that can have large N limit with a fixed flavor symmetry are listed in Table 3. The

first two of these exhibit a dense spectrum of operators. We study these theories in detail in

the following sub-sections.

4.1 1 symmetric and Nf fundamentals

1 + Nf : This theory has 1 anomaly-free global symmetry that we call U(1)B under

which the symmetric field S and fundamental Q have charges given by 1 and �(N + 2)/Nf .

The schematic form of the gauge-invariant operators are

– 35 –



On the landscape of holographic theories

• Most of the known ‘holographic’ gauge theories are of quiver type with rather 
delicate balancing. 


• Or ‘non-Lagrangian’. 


• Class S theories: TN and their cousins.  


• “rank N” F-theory SCFTs (H0, H1, H2, D4, E6, E7, E8) have sparse low-lying 
spectrum, but highly stringy. 


• There is an ambiguity in choosing a family of theories labelled by an integer 
N. eg) (A1, A2N) vs “rank N H0”

[Gaiotto, Maldacena]

[Aharony, Fayyazuddin, Maldacena]

in green and Ui fields in cyan. In terms of these fields the superpotential takes the form

W =
p
∑

i=1

εαβ(Uα
i V β

i Y2i+2 + V α
i Uβ

i+1Y2i+3). (3.5)

The gauge theory for Y p,p−1 results from the following set of operations, which remove three

fields and add one:

• Pick an edge of the polygon, say the one which has an arrow Vi starting at node 2i + 1,

and remove one arrow from the corresponding doublet to make it a singlet. Call this type of

singlet Zi.

• Remove the two diagonal singlets, Y that are connected to the two ends of this singlet Z.

Since we chose the Vi arrow which is removed to start at node 2i + 1 the Y fields which are

removed are Y2i+2 and Y2i+3. This action removes from the superpotential the corresponding

two cubic terms that involve these Y fields.

• Add a new singlet Y2i+3 in such a way that, together with the two doublets at both sides of

the singlet Zi, they form a rectangle. Specifically this arrow starts at node 2i + 3 and ends

at node 2i. The new rectangle thus formed contains two doublets which as before should be

contracted to an SU(2) singlet. This term is added to the superpotential.

By the end of this process, we get 6p − 2 fields. There are p doublet fields Ui, p − 1 doublet

fields Vj , j "= i, one field of type Zi and 2p − 1 diagonal singlets of type Yj, j "= 2i + 2. We present

in Figure 4 the Y 4,3 example, obtained from Y 4,4 = C3/ZZ8 by the series of steps outlined above.

We indicate the new Z singlet in red.

Y4 3

Figure 4: Quiver diagram for Y 4,3, obtained from Y 4,4 = C3/ZZ8.
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eg. [Benvenuti-Franco-Hanany-Martelli-Sparks]



Generic N=1 deformations

• One can consider all possible N=1 preserving deformation around a superconformal fixed 
point to obtain a new SCFT. 


• Deform by a relevant operator (R<2) .


• Flip a ‘super-relevant’ operator (R<4/3) by introducing a singlet and a superpotential 
. 


• New relevant operators can appear at the end of RG flow. (Dangerously irrelevant operators)


• Some of the operators can decouple along the RG flow.  


• Accidental/non-manifest global symmetry may appear.


• Operators that are not in the chiral ring may violate the unitarity bound. (can be checked via 
superconformal index)

W = 𝒪

W = M𝒪

[Maruyoshi, Nardoni, JS 1806]

[Maruyoshi, Nardoni, JS work in progress]



Classification of “small N” superconformal gauge theories

• One can classify all possible SCFTs that can be obtained from a gauge theory 
with fixed matter content by repeating the deformation. 


• SU(2) + adjoint + 1 fundamental flavor: 34 SCFTs


• SU(3) + adjoint + 1 fundamental flavor: 41 SCFTs


• SU(2) + adjoint + 2 fundamental flavor: > 400 SCFTs*


• Sp(2) + adjoint + 1 fundamental flavor: ~ 300 SCFTs*


• G2 + adjoint + 1 fundamental flavor: > 200 SCFTs*


• Any universality?

[Maruyoshi, Nardoni, JS in progress]
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Summary

• An ‘exotic’ large N gauge theory:  degrees of freedom, dense low-lying 
spectrum.


• Such large N gauge theories are simple and common.  
(N=1 analogue of Argyres-Douglas theory)


• 35 classes of large N superconformal gauge theories with simple gauge group. 8 of 
them have dense spectrum. 


• One can hope to extract universal features of quantum gravity by studying large N 
CFT since AdS/CFT goes beyond semiclassical Einstein gravity. 


• The WGC maybe a generic feature of quantum gravity even though it is obtained 
via semiclassical reasoning (up on appropriate correction). 

O(N1)



Future direction
• What is the bulk interpretation of this model with F=O(N)?  

Unrolling of extra-dimension? Higher-spin gravity?


• Can we prove/disprove a version of WGC in AdS?  
Any other ‘swampland conjectures’ to test/formulate? 


• Phase structure of the dense models? 


• Further classification - superpotential, flip-fields, non-simple (quiver) gauge 
theories. 


• Can we find similar results in other dimensions?  
Especially 3d N=2 gauge theories. AdS4/CFT3

Thank you!


